

Overview of GEN IV Demonstration Projects in China

Jiashu, TIAN, EG Member China National Nuclear Corporation

4th GIF Symposium Presentation UIC, Paris, France October 16-17, 2018

Main Outlines

VHTR - SSC Signatory
 SFR - SSC Signatory
 SCWR - SSC Signatory
 MSR - Observer
 LFR - Observer

Outlines — VHTR

Overview

- HTR-PM project in China
- Prospects for VHTR

**The Content of This Part is Provided by <u>Institute of Nuclear</u> and New Energy Technology, Tsinghua University.

1. Overview

- China has large investment and activities on VHTR
 - HTR-PM is a demonstration of power plant
 - HTR-PM will be operated in 2020
 - China will continue the development of VHTR, HTR-PM600 will be followed
- China joined all PMBs in VHTR

2. HTR-PM project

- HTR-PM is a power plant demonstration, supported by central government, main milestones:
 - Feasibility study began in 2003
 - Design was fixed in 2006
 - FCD was taken place on Dec.9,2011
 - Full power operation is scheduled in 2020

2. HTR-PM project

- HTR-PM design features:
 - Single zone, pebble bed
 - Steam cycle
 - Standardized reactor with 250MWt
 - Two NSSS modules coupled with one 200MWe steam turbine
 - » HTR-PM600 will have 6 NSSS modules, has capacity 600MWe,
 - » The reactor modules is same as that in HTR-PM

2. HTR-PM project

2. HTR-PM project - Twin reactors configuration

2. HTR-PM project - нтк-рм600

2. HTR-PM project - нтк-рм600

- Design improvement
 - Same key components demonstrated in HTR-PM
 - » Same reactor modules used in HTR-PM
 - Single unit arrangement for standardization
 - Modular construction
 - Reduce the construction time
 - 60 years lifetime
 - Capability to withstand commercial airplane crash
 - Compact arrangement inside the buildings
 - Simplify the auxiliary system further

2. HTR-PM project - *нтк*-*рм*600

- HTR-PM600 progress
 - First version of design was finished in September 2017
 - Economy feature will be improved than HTR-PM
 - Same components used in HTR-PM, less volume in building, simplified system configuration

3. Prospects for VHTR

- Highlights of VHTR:
 - High efficiency
 - Versatile applications: electricity, cogeneration, process heat,...
 - Inherent safety
 - Relatively mature
 - » HTR-PM is a good demonstration for VHTR future

Outlines — SFR Demo plant

- Preliminary plan of CFR600
- Main design parameters of CFR600
- Fuel and Material Development
- MOX Fuel

**The Content of This Part is Provided by China Institute of Atomic Energy, CNNC.

1. Preliminary plan of CFR600

- 2015.12, Concept design
- 2016.12, Preliminary design
- 2017.12, Detail design, FCD
- 2023.12, Put into operation

2. Main design parameters of CFR600

Parameters	Value
Thermal power, MW	1500
Electricity Power, MW	600
Efficiency	40%
Design Load Factor	80%
Fuel	MOX
Burn up (max), MWd/kg	98
BR	1.15
Circuit Number Per Circuit	2
CDF	<10-6
LRF	<10-8

28.8

3. MOX Fuel - Significant progress

- MOX fuel pellet specimens has been fabricated in laboratory scale.
- Domestic 15-15Ti (CN-1515) structural materials including cladding and wrapper has been fabricated.
- MOX fuel subassembly production line in laboratory scale has been achieved, the manufacturing process tests of MOX fuel subassembly are ongoing.
- The construction of MOX fuel subassembly production line in industrialization scale is under way.

3. MOX Fuel – pellets, cladding and wrapper

4. MOX Fuel - Further Work

Outlines — SCWR

- Introduction
- System Design
- Thermal Hydraulics
- Materials and Water Chemistry

**The Content of This Part is Provided by <u>Nuclear Power</u> <u>Institute of China, CNNC.</u>

1. Introduction

- In 2003, Research on SCWR with a strategic R&D plan completed and proposed
- In 2007, China Minister of Science and Technology (MOST) supported the basic research project named "Study on scientific problems of SCWR"
- In 2009, CAEA supported the first technology research project named "R&D on SCWR technology (phase I)" to propose up the China SCWR design
- In 2014, China joined the SCWR System Arrangement, signed SA extension in 2016 and joined the SCWR TH&S and M&C PMB in July 2017

2. System Design - Parameters

- Based on abundant fundamental
 research achievements, a SCWR
 conceptual design named
 CSR1000 has been established
 with the following features:
 - Pressure vessel
 - □ Thermal neutron spectrum
 - Light water as moderator
 - Two flow-pass of coolant in core
 - Direct once-through cycle

CSR1000 design parameters

Parameters	Value		
Thermal power	2300MW		
Electric power	~1000MWe		
Efficency	~44%		
System pressure	25.0MPa		
Design pressure	27.5MPa		
Reactor coolant inlet temp.	280°C		
Reactor coolant outlet temp.	500°C		
Coolant mass flow rate	1190 kg/s		
Loop number	2		
Neutron spectrum	Thermal		
Cycle	once-through		
Design lifetime	60 years		

2. System Design - FA Design

Structure

- A square FA with two-row FRs and a central moderator box
- **Δ** 4200mm active length; Φ9.5 RD
- □ SiC cladding; Cruciform control rod
- Assembly box thickness:2mm
- Moderator box thickness:0.8mm

2. System Design – Core Design

4th GIF Symposium, Paris, October 2018, 16-17

2. System Design - Safety Design

 Conceptual design of safety system of CSR1000 has been accomplished, including passive safety system and active safety system

2. System Design - CSR150 Design

 Based on CSR1000, the conceptual design of the technical demonstration CSR150 has been proposed

CSR150 design parameters

Parameters	Value		
Thermal power	375MW		
Electric power	150MWe		
Efficency	$\sim 40\%$		
System pressure	25.0MPa		
Inlet/outlet temp.	280°C/500°C		
Coolant mass flow rate	193.7 kg/s		
Neutron spectrum	Thermal		
Coolant flow scheme	tow-pass		
²³⁵ U Enrichment	5.7&7.2		
Average power density	~60MW/m ³		
Active core height	2.5m		
Cladding material	3108		

3. Thermal Hydraulics

- The SCWR thermal hydraulics research in China includes four major aspects:
 - Heat transfer and flow tests of SCW in tubes, annular channel and simple rod bundles
 - Safety performance related tests including natural circulation, critical flow, CHF near critical pressure
 - Flow stability research of SCW in parallel Channels
 - Assessment and applicability of analysis codes
- Based on the above research work, a T-H database of SC fluid has been established, and some thermal hydraulic characteristics of SC fluid have been obtained

3. Thermal Hydraulics - T/H Facilities

• Up to now, China has setup some SCW test facilities, from small scale to larger scale, to fulfill the R&D request

Loop	LSWT	SSWT	SNCL	XJHPW L-X	XJHPW L-M	XJHPW L-S	SWAM P
Organization	NPIC	NPIC	NPIC	XJTU	XJTU	XJTU	SJTU
Pressure(MPa)	32	30	30	40	40	40	30
Flowrate(t/h)	30	0.5	Natural Circulation	4.5	1.0	0.2	5
Heating Power	5MW	0.32MW	0.1MW	Sharing with electrical heating power 1.4 MW, Recover about 50% to 70% with a heat exchanger			1.2MW

3. Thermal Hydraulics - T/H Facilities

SSWT, operation in 2009

LSWT, operation in 2012

3. Thermal Hydraulics - T/H Facilities

XJHPWL-X

XJHPWL-M

XJHPWL-S

SWAMP

4. Materials and Water Chemistry

- The SCWR material research in China includes four major aspects:
 - Screening of major candidate materials for fuel cladding and internal component
 - Mechanical property study of major candidate materials for fuel cladding and internal component
 - Corrosion property study of major candidate materials for fuel cladding and internal component
 - SCC property study of major candidate materials for fuel cladding and internal component
- Preliminary property assessments of several kinds of candidate materials have been obtained, and a material database of out-of-pile performances has been set up

4. Materials and Water Chemistry - Some Results

Multi axis/section/channel crack growth facility

4th GIF Symposium, Paris, October 2018, 16-17

measurement

SCC of MA Alloy 895

CGR 🗢 (MCW

(s/mm/s)

growth rate

Crack

1E-5

1E-7

1E-10

=38.5MPa/m with 26 co/kg H, in subcritical

GR 🗢 1%/CW

SCC CGR at 550°C in SCW

20

SCC CGR at 360°C in subcritical water

ao

ún with Ar deserated i

4. Materials and Water Chemistry - Some Results

- The sensitize of 690 Alloy SCC
 - Low content Cr at the crack boundary
 - Sensitization accelerates crack growth
 - SCC is more sensitive to cold work

Outlines — MSR

- Introduction
- Systems and Techs of TMSR
- TMSR Design

**The Content of This Part is Provided by <u>Shanghai Institute</u> of Applied Physics, Chinese Academy of Sciences.

1. Introduction

- TMSR is to develop the TMSR-LF and TMSR-SF in the next 20 to 30 years
 - Use thorium fuel and closed fuel cycle
 - Nuclear heat application
- TMSR-LF, a liquid fuel molten salt reactor or MSR
- TMSR-SF, a solid fuel molten salt reactor or FHR
- Program was initiated by the Chinese Academy of Sciences (CAS) in 2011

1. Introduction - TMSR Fuel Cycles and Applications

2. Systems and Techs of TMSR - Thorium-Uranium Fuel Cycle

2. Systems and Techs of TMSR - Reactor Design and Components Development

- Development of design and analysis methods and tools
- Development of technology and equipment used for high-temperature fluoride salts
- Design of the 2 MW TMSR-LF1 and the 10 MW TMSR-SF1
- Design of the "simulator" TMSR-SF0

Vessel and core structure design

- Control rods
- Fueling and defueling machine
- Neutron detectors
- H-T Flowmeter, pressure sensor, thermometer, level gauge
- Digital reactor protection and control system

2. Systems and Techs of TMSR - Fluoride Salt Loops

- Constructed high-temperature fluoride salt loops.
- Developed equipment to be used with fluoride salts, e.g., pump, heat exchanger, valve, seal, pressure meter, etc.
- Design and analysis methods for high-temperature fluoride salt loops
- Prototypes for pump, valve, heat exchanger, etc.
- Experience of loading and unloading of fluoride salts
- Experience of high-temperature fluoride salt loops operation and maintenance

4th GIF Symposium, Paris, October 2018, 16-17

3. TMSR Design - Completion of the TMSR-SF1 Design

3. TMSR Design - Progress of the TMSR-SF0 Construction

- The engineering design was complete and major components was ordered
- Steel frames were constructed
- Installation of major components is expected to start in mid of 2018
- A practice for the future test reactor construction

4th GIF Symposium, Paris, October 2018, 16-17

3. TMSR Design - Progress of the TMSR-LF1 Design

4th GIF Symposium, Paris, October 2018, 16-17

3. TMSR Design - Site Evaluation and Preparation

- NNSA evaluation and approval
 - Environmental impact and site safety reports submitted in 12/2017
 - 121 Q1s were generated in 02/2018
 - Reviewers and applicants met in 03/2018 to resolve most Q1s
 - Reviewers to visit candidate site in 04/2018
 - Remaining Q1s &Q2s to be reviewed by NNSA committee in 07/2018.

Outlines — LFR

- Introduction
- Key Technologies
- Three Integrated Test Reactors
- Engineering Implementation Activities

**The Content of This Part is Provided by <u>Institute of Nuclear</u> <u>Energy Safety Technology, Chinese Academy of Sciences</u>.

1. Introduction - Roadmap Proposal

4th GIF Symposium, Paris, October 2018, 16-17

International Forum

1. Introduction - CLEAR-M10d Design

- 10MW Class Lead-based Mini-Reactor
 - Small modular and compact, easy to transport and install
 - Inherent safety, no severe accident
 - Long duration, better economy, environmentally friendly

4th GIF Symposium, Paris, October 2018, 16-17

International

1. Introduction - ADS Reactor for Transmutation CLEAR-I

- Objective: ADS/ Lead-based Reactor technology validation
- Design status: the detailed conceptual design has been done

CLEAR-III is designed as commercial ADS reactor for nuclear waste

transmutation, which has the transmutation performance of TSR_{LLMA} > 10

2. Key Technologies

- Coolant Technology
- Key Components

- Materials and Fuel
- Operation and Control

1:1 scale prototype components, tested under lead alloy condition

4th GIF Symposium, Paris, October 2018, 16-17

3. Three Integrated Test Reactors

Multi-physics integrated simulation by ~30 codes

Physics Test CLEAR-0

Critical and subcritical duel-mode

Engineering Validation CLEAR-S 2.5MWth, >200t LBE pool type facility

4. Engineering Implementation Activities

- ✓ Industrial park for lead-based reactor
 - ~700,000 m² laboratory under construction
- ✓ China Industry Innovation Alliance of Lead-based Reactor (CIIALER)

over 100 enterprises president member INEST,CAS

Any Questions?